£

ICASE REPORT

PREPAGING AND APPLICATIONS TO
THE STAR-100 COMPUTER

Kishor S. Trivedi

Report Number 76-28
August 30, 1976

(NASA-CR-1g85

735) pPRrep

10 AG ING

THE STAR-100 COMPUTER ‘Iéng?PP;;carons
p

00/60

INSTITUTE FOR COMPUTER APPLICATIONS
IN SCIENCE AND ENGINEERING
Operated by the
UNIVERSITIES SPACE RESEARCH ASSOCIATION
at

NASA'S LANGLEY RESEARCH CENTER
Hampton, Virginia

N89-71333

Unclas
0224340

PREPAGING AND APPLICATIONS TO THE STAR-100 COMPUTER

Kishor S. Trivedi
Department of Computer Science

Duke University

ABSTRACT

The use of prepaging is described for the CDC STAR-100 system.
A feature known as ADVISE is provided by the system for this pur-
pose. A timing an#lysis of a matrix multiplication routine is
carried out to evaluate the effect of prepaging. Finally, a sugges-

tion for a controlled prepaging algorithm is made.

This report was prepared as a result of work performed under NASA
Contract No. NAS1-14101 while the author was in residence at ICASE,
NASA Langley Research Center, Hampton, VA 23665.

1. Introduction

The Control Data Corporation (CDC) STAR (STring ARray) computer is a high
performance vector machine capable of performing up to 100 million operations
per second. Although the size of the main memory is limited to either % mil-
lion or 1 million 64-bit words, the use of a virtual memory capability allows
a virtual address space size of 4 trillion 64-bit words. The virtual memory
is implemented by means of a paging mechanism. The system provides two page
sizes, 512 (small) and 65,536 (large) words, respectively.

Because of a very high speed cpu, the system is highly I/0-bound for
many problems (Knight,Poole,and Voigt [75]; Lynch [74]). Since the paging
device is a disk, the use of the large page size can reduce the I/0 time
considerably. Since the total number of large page frames is either 8 or 16,
the use of a large page dictates a very small degree of multiprogramming.

The second technique to improve the performance is to increase the size of
the main memory (Denning [68al,[70]). This allows a larger page allotment
per program thus reducing the paging I/0. However, due to the small size of
the main memory available on the STAR, thrashing can occur even with a very
small degree of multiprogramming (Brandwajn [741, Denning [68a], Trivedi
[76b],[76c]). Such an I/0 limited and memory limited situation forces very
low degrees of multiprogramming. Currently, many jobs are constrained to

run in a monoprogramming mode. This coupled with a demand paging environment

implies no cpu-I/0 overlap whatsoever. In such an environment, one possible

way to introduce the cpu-1/0 overlap (and hence improve the throughput) is
to use prepaging. Prepaging allows the overlap between the execution and
I/0 of the same job. Therefore, we expect it to improve the throughput,
particularly for low degrees of multiprogramming. For further discussion
on the usefulness of prepaging see Joseph [70] and Trivedi [741,[76a],[76b],
[76d]. Note that the best that we can hope to do with prepaging is either
completely mask the I/0-time or completely mask the cpu-time, whichever is
less.

The STAR system provides a feature known as ADVISE which allows prepag-
ing. In Section 2, we describe our efforts to exploit this feature. We
have developed a subroutine FPRQST which can be called by a FORTRAN pro-
grammer to request the operating system either to prepage or free a page.

We also illustrate the use of this subroutine in a program carrying out a
matrix-multiplication. When we attempted to test our programs on the system,
we found that the ADVISE feature does not work in the current version of the
.operating system. Hopefully, in a future version of the operating system,
this feature will be debugged and the experiments of Section 2 may be
carried out.

In Section 3, we do a timing analysis of the matrix multiplication routine
with and without prepaging and using both the small and the large pages. We
expect that the I/O-time can be reduced by an order of magnitude by switching
to large pages. It should also be clear that prepaging has a potential of
cutting the total execution time in half for a balanced program.

In the current STAR system a global LRU paging algorithm is used (CDC
(751, Knight [73]). If prepaging is allowed in a multiprogramming mode, then
a program can very rapidly steal pages away from other programs. This may

imply an improvement in the performance of that program but the overall

system performance can suffer. Even in a monoprogramming environment (or
using a local replacement algorithm) a user can destroy his own performance
if uncontrolled prepaging is permitted. In Section 4, we discuss how pre-

paging can be controlled.

2. Prepaging on STAR

A program can issue an ADVISE message to the operating system of an
anticipated need for virtual space in an attempt to avoid a page fault or
to advise the system of pages no longer to be used by this program (CDC L761]).
The advise can be issued for at most one large page and at most eight con-
secutive small pages at a time.

Based on this feature, we have developed a routine FPRQST which can be

called by a FORTRAN programmer, as follows.

CALL rPRQST (OUT, PGSIZE, PGCNT, VBA)

where
OUT is a logical variable indicating the direction of transfer,
i.e., OUT = .FALSE. if a page is to be fetched and OUT = .TRUE.

if a page is to be freed.

PGSIZE is a bit variable such that PGSIZE = B'QO' for small pages

and B'l' for large pages.

PGCNT is a 4-bit vector giving the number of pages to be

transferred.

VBA is a 64-bit vector (or a descriptor) such that the rightmost
48-bits denote the virtual bit address of the first page to be

transferred.

The details of the FPRQST routine are given in the Appendix. We now
demonstrate the use of the routine in a program that multiplies the
matrices A and B storing the result in C. The matrices A, B and C are
N by L, L by R, and N by R, respectively. The matrices are assumed to be
stored columnwise, as in STAR FORTRAN (CDC [76al). Let A = (aj, a3, ..., ap),
B = (bl, by, ...5 bp) and C = (Cy, Cp, ..-s Cr), where aj denotes the
i th column of A. The algorithm we use forms the successive columns of C

using the formula,

The corresponding program in STAR FORTRAN can be written as follows.

DO 100 J=1, R

DO 10 K=1, L

C(1,J;N) = C(1,J;N) + B(K,J)*A(1,K;N)
10 CONTINUE

100 CONTINUE

Note that the notation A(i,j;n) denotes a vector consisting of n
contiguous array elements with the first element being A(i,j).

During the j th execution of the major loop, the program operates on
the j th columms of both B and C and the whole array A. After the
j th execution, the j th columns of B and C can be discarded from the
main memory and the j+l st columns of B and C can be brought in.

However, the data transfer can only be done in the units of a page size

(assumed to be equal to Z words). Let us assume that max (N,L,R) £ Z.
Let DWS(j) denote the data working set of the program during the j th
loop, and let P(x) denote the pages containing the subarray x. Then
after a little thought, we arrive at the following expression for DWS.

DWS(1) = P(A) Y P(by) U Pley)

DWS (j+1) (= DWS(3)

o -

DWs(j) - P(bj) v P (bj+l)

i if l%%ﬂ > tgizéllj

DWS(3) - P(e5) U P (eqy)
i[> [

DWS(3) - P(by) - P(cy) U F (b)) U P(eyyp)

o 14 e

and |9 > L2,

The size of the DWS is constant and is equal to lyglq + 2 pages. The
above analysis suggests that we insert the code to prepage the first page
of both B and C, and all the pages of A just before the J-loop.
Between the statements labelled 10 and 100, we can insert the code to free
and prepage one page each of B and C, conditionally. However, this pro-
cedure does not allow much overlap between the computation and the page
transfer. To allow the desired overlap we assume that the program is

allotted 2M (M = 1, 2, ...) page frames more than required to accommodate

its DWS. If both N and L divide Z then M =1 1is adequate., Otherwise

—-5-

a larger value of M is desirable to achieve enough overlap. Finally, to
make sure that the three arrays are aligned on a page boundary, each of them
should be declared separately in COMMON. With these modifications, the pro-

gram appears as follows.

prepage the first page of both B and C
prepage the whole array A
prepage the pages numbered 2, ..., M¥l of both B and C
DO 100 J=1, R
DO 10 K=1,L
C(1,J;N) = Cc(1,J;N) + B(K,J)*A(1,K;N)
10 CONTINUE
IF (J*N/Z .EQ. (J-1)*N/Z) GO TO 50
free the page numbered J*N/Z of the array C
IF ((J*N/z+#+1) .GT. [N*R/Z1) GO TO 50
prepage the page numbered (J*N/Z4M+l) of the array C
50 IF (J*L/z .EQ. (J-1)*L/Z) GO TO 100
60 free the page numbered J*L/Z of the array B
IF ((J*L/z+M+1) .GT. [L*R/Z1) GO TO 100
prepage the page numbered (J*L/Z+M+l) of the array B
100 CONTINUE.

We will now show how to code the calls for prepaging and freeing using
the FPRQST subroutine. We will only do this for the statement labelled 60;
others can be translated similarly. This can be done by replacing the
statement 60 by the following statement sequence.

ASSIGN DB, B(1l, J; Z)

CALL FPRQST (.TRUE., PGSIZE, B'00Ql', DB)

Note that DB 1is assumed to be declared as a descriptor to

the array B.

Unfortuqately, the ADVISE feature does not work in the current version

of the STAR operating system. Therefore, we could not test these programs

+ Tz.

) ZT ZT
N*L R*L e " e
Tp-—(z+1>Tz+<z)masz,(x+1)TZ%+2max3L,xTz

An expression for Te is easily derived as follows. During each itera-
tion of the inner loop, one vector multiply (of length N) and one vector
addition (of length N) are carried out. The times for these two are given
by 159 + N and 71 + % in machine cycles of 40 ns each (CDC [76¢c]).

6

6 ms = (6ON*L + .92*104L) * 10 ° ms.

Te = ((159 + N) L + (71 + %N)L)*&O*lo—

CDC model 819 disk drive is used as paging device. To simplify our
analysis, we assume that the three matrices are stored on separate disk

drives, and that each matrix is stored sequentially cyclinder by cylinder.

Then the average time to fetch a page can be expressed as

1 Z

= = * -— -

TZ Tseek + Tlatency * Ttransfer Nseek Dseek *3 DR *R
where
Dseek is the time to move the disk head between the adjacent cylinders
N is the average seek distance
seek

DR is the disk rotation time
R is the transfer rate in bits per millisecond.

-8-

and could not measure the performance improvement obtained by prepaging.
Instead, we carry out a timing analysis of the two programs in the next

section.

3. The Timing Analysis

Let Tz denote the average time to fetch (or push) a page. Let Td
and Tp denote the total times to exXecute the matrix multiplication program
of the previous section with demand paging and prepaging, respectively. We
will assume that it takes zero time to push a page that is not modified.
Similarly, it takes zero time to fetch a page that is uninitialized. Under
demand paging, with a page allotment 2 the size of the DWS< = [ngq + 2),
we need to fetch P%gq pages of A, P%gq pages of B and we need to
push F%;q pages of C. Let us denote the cpu time spent in a single
iteration of the major loop by Te' Then

Note that T, is a lower bound which assumes a perfect sequence of replace-

d
ment as in Belady's MIN algorithm (Belady [66]).

For prepaging, we assume a page allotment = F%?q + 4, Since the total
number of large pageframes available for data is either 7 or 15 in the STAR
system, the largest matrices that we can deal with are given by F%?q = 3
or. 12, Since, for a large page, Z = 65,536, fairly large matrices are
considered. To simplify the analysis, we assume that L divides N, and

both R and N divide Z. Further let N = xL. After a little thought,

an upperbound to Tp is easily found to be

3
i = = . = * bit
For the 819 disk, Dseek 15 ms., DR 33 ms., and R 38 10 s

per ms. (CDC [74]). NSeek is difficult to estimate in general; however,
the assumptions made on data layout and the fact the the program is running

in a monoprogramming environment make reasonable estimates possible. The

capacity of an 819 cylinder is very close to the size of a large page.

o1
Therefore, Nseek =1 for Z = 65,536. Also, Nseek * 159 for the
small pages.
Therefore, for
16
*
z = 65,536 = 2°°, T, = 15 + 16.5 +3——§% > 140 ms.,
38*10
and for
9 15 27x64
Z=512=2", TZ=F9+16'5+—§= 30 ms.
38*10

An an example, let L = 32, N = R = 1024, Using small pages and demand

paging, the total execution time is given by

Td(small page) = 67,520 ms.

If we introduce prepaging but retain the small page size,

Tp(small page) = 65,28Q ms.

In this case, we see that a small percentage reduction in the total time is
obtained due to prepaging. The reason for this behaviour is that the pro-

gram is very highly I/0 bound. 1In fact the total I/0O time is 65,280 ms., and

the total computation time is 224Q ms. The best that can be done by prepag-
ing is to mask all the computation time.

Now for the same problem size, let us use a large page. 1In this case,
T4(large page) = 4760 ms.

We see that more than an order of magnitude reduction in the total time is

obtained by switching to a large page. Also,
Tp(large page) = 2660 ms.

Thus, keeping the large page size and using prepaging further obtains a 457%
reduction in the total execution time. In this case, we see that the total
I/0 time is 2520 ms. and the total computation time is 2240 ms. The best
that can be done by prepaging is to mask all the computation time. Our
prepaging scheme performs very close to the ideal prepaging scheme in this
case. It is easy to see that for a nearly balanced program close to 50%
reduction in the total execution time can be accrued due to prepaging. How-
ever, for a highly imbalanced program, relatively small percentage improve-
ment can be expected. If the program is heavily I/O bound then the use of
the large page size can improve the performance by an order of magnitude.
The following table gives the total execution time for different problem

sizes with and without prepaging (assuming Z = 65,536).

ms. ms.
N L R Td Tp

1024 32 1024 4760 2660
1024 64 1024 7000 4900
512 512 512 11920 11080
512 32 512 3160 2520

-10-

4. Controlled Prepaging

In the current version of the STAR operating system, a global LRU
algorithm is used for the page replacement decision. Furthermore, an
advise to bring in a page is allowed to increase the page allotment of a
program at the expense of some other program. In such an environment, a
programmer interested in optimizing his own performance can quickly force
out all the other programs from the main memory. With this type of environ-
ment, prepaging can only be recommended in a monoprogramming application.
Even in a monoprogramming-environment (or in multiprogramming environment
with a local replacement algorithm) a naive user can fill up valuable space
with almost useless pages thus destroying his own performance. The paging
algorithm should guard against such possibilities as far as possible.

The first requirement of controlled prepaging is, then, that the user
spaces be isolated from each other so as to implement a local paging
algorithm in each individual space. Such a situation is desirable even in
a demand paging environment (Denning [68b],[70]; Knight [731). However, if
we require a total isolation of the user spaces from each other then we are
constrained to the use of a fixed-memory paging algorithm. Since a program's
memory requirements are expected to change during its execution, a variable-
memory paging algorithm can potentially perform better than a fixed-memory
algorithm, To resolve this issue, we allow the user space allocation to
vary dynamically, however, the variation is not controlled by the user but
is controlled by the system. The space allocation may be based on the per-
formance of a program in the last interval of measurement. For further
details see Chu and Opderbeck [72], Denning [72], Denning and Schwarz [72]

and Knight [73]. With this approach, over short time intervals the space

-11-

allocation can be assumed to be constant and a fixed-memory paging algorithm
can be utilized.

In order to prevent a user from misusing the memory space allotted to
him we postulate the following requirements. When a user expresses the
desire to prepage a page, this is not taken as a command but as an advice
to the operating system. The operating system may execute it immediately,
may defer it or even ignore it., Thus not only a user cannot steal a
page away from another user by issuing a prepage request, but he camnot
steal a page away from his own space unless the operating system permits it.
The system does not allow a prepaged page to be brought in if this requires
the replacement of a useful page. Similarly, when a program issues a request
to free a page the empty space thus created remains in the space allotment
of the program. Thus the space for prepaging is provided by the programmer
himself. We assume that when a programmer issues a prepage request he is
reasonably certain of the use of that page. Therefore, to avoid an extra
page fetch, we require that a prepaged page cannot be replaced until after
its first use. The procedure outlined so far is likely to deadlock as
follows, 1Initially when all the space allocated to a program is empty, a
programmer can issue repeated prepaging requests filling up the entire space.
1f, before using any of these pages, he requires (or page faults) another
page then a deadlock will occur. To avoid the deadlock, we allow the pre-
paged pages to fill up at most a fraction 0 < b <1 of the allocated space.

Let N denote the program's address space and let St denote the
memory state at time t. Let c be the page allotment. The memory
state S 1is divided into four disjoint sets: Dt denotes that set of
pages which have been declared dead (or free), Nt denotes the set of pages

which have been prepaged but not yet set up in the main memory, Pt denotes

-12-

the set of pages which have been prepaged and set up in memory but not yet
used, and Ut = St - Pt - Dt - Nt denotes the rest of the pages which have
been used at least once. Let RA (S,q,x) denote the page replaced by the
paging algorithm A given that the memory state is S, the control state is
q and the page x 1is to be brought into the main memory. The control state
imposes an ordering on the memory state S to help make the replacement
decision. We assume that the advise given by the programmer is either

PRE(x) or FREE(x) for some xeN. If we denote the reference string of

the program by Tis see Tis vas then r € N or r_ = PRE(x) for x € N

t

or r = FREE(x) for x € N. Based on a demand paging algorithm A, we
now define a prepaging algorithm FPA.

FPA:

[step 1] IF r.,, =%x¢&N THEN

fal 1IF x ¢ N, THEN
/* THIS IS ALMOST LIKE A PAGE FAULT.
THE PROGRAM HAS TO BE SUSPENDED
UNTIL THE REQUIRED PAGE IS SET-UP
IN THE MAIN MEMORY, AFTER WHICH */

U

g4l = U T X

Nt+1 = Nt - x and RETURN;

[(b] IF x € P_ THEN /% SUCCESS */

Pevl = B = X5

U Ux + x and RETURN;

t+1

-13-

[step 2]

[step 31

END FPA

[e]l IF x ¢ U, THEN /* SUCCESS */

[d] IF x ¢ 5,

IF

IF

IF

IF

IF

IF |s|

Uy = U, and RETURN;
THEN /* PAGE FAULT */
|s,| < c THEN
Uppp = U + %5
ELSE
Ut+1 = Ut +x - RFA(UtL) Dt’ g, X) and RETURN;
¢+1 = FREE(x) THEN
x € U THEN
el Ut - X3 Dt+l = Dt + x; and RETURN;
€ P THEN
el Pt - X3 Dt+1 = Dt + x; and RETURN;
x € N. THEN
t+l Nt - X; Dt+l = Dt + x; and RETURN;
4] = PRE(x) THEN
- < < *
IF |s, =D, <c and |P,U N| <b*c and x¢s
THEN
Newp =N v %3

/* INSTRUCTIONS TO FETCH THE PAGE ARE
ISSUED NOW. LATER, WHEN THE PAGE IS SET UP
IN THE MAIN MEMORY IT WILL BE INTRODUCED IN
THE SET Pt

OTHER MODULE OF THE QPERATING SYSTEM */

AND TAKEN OFF FROM THE SET Nt

BY SOME

¢ THEN

D = Dt ~y FOR SOME vy ¢ Dt;

t+l

14~

where

RFA(Ut \JDt, q, X) y for some y € D, if Dt #0¢

RA(Ut’ q, X) otherwise.
5. Conclusion

Many programs operating on large arrays are I/0-bound in the STAR system,
and because of the relatively small memory, are forced to run in a mono-
programming environment. It is shown that the use of large pages for
these arrays can reduce the I/0 time by more than an order of magnitude
and thus make it more balanced. Monoprogramming and demand paging imply
that no cpu-I/0 overlap is achieved. The use of prepaging introduces the
overlap and thus reduces the total execution time of the program. If the
program is balanced then a substantial reduction in the total execution
time is shown to be achieved by prepaging.

The STAR system provides a feature known as ADVISE which supports pre-
paging. However, this feature does not work at present. The results of
this paper will, hopefully, serve as an impetus to debug the feature. Even
when this feature starts functioning, we can only recommend prepaging for a
monoprogramming environment. We also provide a suggestion for a controlled
prepaging algorithm which can be usefully implemented in a multiprogramming

environment.

6. Acknowledgement

I would like to thank John Knight and Robert Voigt for helpful suggestions

during the course of this work.

-15-

10.

11.

12.

13.

14.

15.

REFERENCES

Belady [66]. Belady, L. A.: "A Study of Replacement Algorithms for a
Virtual Storage Computer.' IBM Systems Journal 5, 2 (1966), pp. 78-101.

Brandwajn [74]. Brandwajn, A.: "A Model of a Time Sharing Virtual
Memory System Solved Using Equivalence and Decomposition Methods."
Acta Informatica 4, pp. 11-47.

cpc [74]. Control Data Corporation STAR-100 Peripheral Stations,
Revision B, Arden Hills, Minn.

cpc [75]1. Control Data Corporation STAR-100 Hardware Reference Manual,
St. Paul, Minn.

cbCc [76]. Control Data Corporation STAR-100 Operating System Reference
Manual, Sunnyvale, California.

. CDpC [76al. Control Data Corporation STAR-100 FORTRAN Language Reference

Manual, Sunnyvale, California.

cpc [76b]. Control Data Corporation STAR-100 Assembler Reference
Manual, Sunnyvale, California.

CDC [76¢c]. Control Data Corporation STAR-100 Preliminary Instruc-
tion Execution Timing Manual, Arden Hills, MN.

Chu and Opderbeck [72]. Chu, W. W. and Opderbeck, H.: "The Page
Fault Frequency Replacement Algorithm," Proc. AFIPS FJCC, 1972,
pp. 597-609.

Denning [68a]. Denning, P. J.: '"Thrashing: 1Its Causes and Prevention,"
Proc. AFIPS SJCC 33 (1968), pp. 915-922.

Denning [68b]. Denning, P. J.: 'The Working Set Model of Program
Behaviour," CACM 11, 5 (1968), pp. 323-333.

Denning [70]. Denning, P. J.: "Virtual Memory," Computing Surveys 2,
3 (Sept. 1970), pp. 153-189.

Denning [72]. Denning, P. J.: "On Modelling Program Behavior," Proc.
AFIPS SJCC, 1972.

Denning and Schwartz [72]. Denning, P. J. and Schwartz, S. C.:
"Properties of the Working Set Model," CACM 15, 3 (Mar. 1972),
pp. 191-198.

Joseph [70]. Joseph, M.: "An Analysis of Paging and Program Behaviour,"
The Computer Journal 13, 1 (Feb. 1970), pp. 48-54.

-16~

16.

17.

18.

19.

20.

21.

22.

23.

Knight [73]. Knight, J. C.: '"Scheduling Central Resources on the CDC
STAR 100," ICASE Report, NASA Langley Research Center, Hampton,
Virginia, August 1973.

Knight,Poole,and Voigt [75]. Knight, J. C.; Poole, W. G.; and Voigt,
R. G.: "System Balance Analysis for Vector Computers,' Proc. ACM
Annual Conference, October 1975, pp. 163-168.

Lynch [74]. Lynch, W. C.: '"How to Stuff an Array Processor," Third
Texas Conference on Computing Systems, Nov. 1974.

Trivedi [74]. Trivedi, K. S.: '"Prepaging and Applications to Struc-
tured Array Problems," Ph.D. Thesis, University of Illinois, Urbana,
June 1974,

Trivedi [76al. Trivedi, K. S.: 'Prepaging and Applications to Array
Algorithms," to appear in IEEE Transactions on Computers.

Trivedi [76b]. Trivedi, K. S.: '"On Some Aspects of the Performance of
Paging Systems,'" submitted for publication, January 1976.

Trivedi [76c]. Trivedi, K. S.: "A Performance-Comparison of Systems
With and Without Virtual Memory,' submitted for publication, June
1976.

Trivedi [76d]. Trivedi, K. S.: 'On the Paging Performance of Arrav

Algorithms," submitted for publication, May 1976.

=17~

APPENDIX

Before issuing an ADVISE to the operating system, a three word

message called the alpha packet has to be formed.

message is as follows (CDC [76]):

Alpha (1)

Alpha (2)

Ajpha (3)

len

eea

SSs

The format of the

r len unused 2007
16 16 16 16
unused eea
16 48
ss pgct vba
48
8 8

Response code returned by operating system when this message

has been procesaed.

is zero.

If no error occurs, the response code

If len = FFFF, Alpha (3) contains the length and virtual bit

address of the Beta portion of the message.

Otherwise, Beta

is assumed to begin at Alpha (3), and len is the length of

the Beta portion.

Virtual bit address to receive control if an error occurs

during message processing (r # 0). If eea =0

is considered fatal.

Error response field:

-18-

the error

. pget Page control fields further divided as follows:

pio psz pn

pio

Attach or load pages

Remove pages

psz

Small pages

Large page

pn Page count with a maximum value of eight for small

pages.

vba Virtual bit address referred to by the FPRQST action.

After forming the message, the user issues an exit force instruction
that transfers the control to the operating system., Immediately following
the exit force instruction in the instruction stream is a 32-bit indirect

message pointer: Hexadecimal format of the message pointer is:
O0EEOOrT

where rr 1is the register comntaining the virtual address of the message.
The following FORTRAN subroutine FPRQST forms the message in the 192-bit

vector MSG based on the actual parameters: OUT, PGSIZE, PGCNT and VBA.

The error exit address (eea) is taken to be the address of the statement

labelled 50. After forming the message, FPRQST calls an assembly language

routine PREPAG which issues the exit force and also plants the indirect

message pointer as required. For details of the STAR assembly language

see CDC [76b]. A descriptor R, pointing to the message is passed as a

parameter to the PREPAG routine.

-19-

SUBROUT INE FPRQST (OUT+PGS1ZE +PGCNTsVBA)

OO0 00n

50

50C
5000

INTEGER CBeCIl+L50 »

BIT MSG(192)

EQUIVALENCE (LS50sMSGI(65))

LOGICAL OUT

BIT PGCNT(4)¢VBA(64) PGSIZEWE R

DESCRIPTOR E eR

ASSIGN ReMSG(1;192)

r=8"'00000000000000C0CO0O00O0C00000000C10000000000000000
0000000000000111"

THE FOLLOWING FIVE STATEMENT SEQUENCE FORMS THE VIRTUAL

ADDRESS OF STATEMENT S0 IN THE INTEGER L50eSINCE LS50 1S

EQUIVALENCED TO THE SECOND WORD OF MS5Gs THE EEA FIELD GETS THE

CORRECT ERROR EXIT ADDRESSeFOR DETAILS SEE STAR FORTRAN +

META MANUALS

CALL QBBSAVE (3e ¢3)

CALL QBEX (445&5)

CALL Q8SUBX (3+4+CB)

CALL QBEX (Cle&50)

L50=Ci+CB

ASSIGN EeMSG(138;31)

E=PGSI1ZE

ASSIGN E«MSG(137;1)

E=8l0|

IF (ouTy E= B"1'

ASSIGN E«MSG(141 ;4)

E=PGCNT (1 ;4)

ASSIGN EeMSG(145;48)

E=VBA(17;48)

CALL PREPAGI(R)

GOTO 5000

PRINT 500 .

FORMAT(5Xs 'YOUR ADVISE HAS BOMBED ')

RETURN

END

PREPAG

PREPAG

ouUTPUT
LIBP.STDLIB
IDENT

INITIAL

REGe 128 R+Dum
BEGIN

PARAMS AL L 2 R
LOO Ry DUM
OSCALL DUM
RETURN

FINAL

END

FINIS

=20~

